Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Design and Performance of Low-Viscosity ATF

2007-10-29
2007-01-3974
Low-viscosity automatic transmission fluids (ATF) have advantages in terms of lower churning losses and lower drag resistance in the automatic transmission (AT) and higher transmission efficiency. While a low viscosity is effective to the improvement of fuel economy, there is a risk of degraded fatigue prevention performances or anti-wear properties of the ATF, which can have an adverse effect on the reliability of the AT. Consequently, the use of current low-viscosity ATFs were limited to AT units that were specially developed to use them. The aim of our study was to resolve these problems and improve the general versatility of low-viscosity ATFs. We developed a low-viscosity ATF having high reliability by designing its viscosity based on the field test data involving conventional commercial fluids of normal viscosity design (7.4mm2/s@100°C), and by optimizing the blend of base stocks and viscosity index improvers (VI improvers).
Technical Paper

Data Processing Method of Finger Blood Pulse for Estimating Human Internal States

1998-02-23
980016
It was found that the finger blood pulse shows various fluctuations in different driving conditions. The nature of the finger blood pulse fluctuations was used for estimating a driver's internal state. Indexes suitable for expressing the fluctuations were moment and density; these indexes were calculated by using a return-map. However these results were measured by an off-line system and were calculated after the experiment. So, an on-line (real-time) system was needed in order to construct a driver's internal state monitoring system. As a first step, an online system for estimating the human internal state was developed. This system is available for estimating the human internal state every 30 seconds.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of Fuel Consumption Measurement Method for Fuel Cell Vehicle - Flow Method corresponding to Pressure Pulsation of Hydrogen flow -

2007-07-23
2007-01-2008
Japan Automobile Research Institute (JARI) have developed the flow method as an easy way of measuring hydrogen consumption of fuel cell vehicles (FCVs) in real-time. A 2004 study on fuel consumption of five models of FCVs, measured by thermal flowmeters and based on gravimetric method, exhibited measurement errors within ±1% range for three models, but the errors were as large as -8% for two models that showed significant pulsation in hydrogen consumption flow. Assuming that the pulsation is the cause of errors in the flow method, we analyzed influences of pulsation in each flowmeter from two points (frequency and amplitude) and found that pulsation indeed caused flowmeter errors. Expansion chambers (Buffers) and throttle valves (regulators) were confirmed to have an effect in attenuating pulsation. Amplitude of pulsation shrunk to one tenths when such pulsation-reducing instruments were introduced between pulsating FCVs and flowmeters and were put to test.
Technical Paper

Operational performance of eco-friendly engine oils formulated with the sulfur-free additive ZP

2007-07-23
2007-01-1991
The authors have spent considerable time studying the sulfur-free additive ZP as a means to improve the environmental properties of engine oils. ZP is an alternative compound to ZDDP, which has been a key engine oil additive for over 50 years. The ZP molecule contains oxygen in place of the sulfur found in ZDDP. In our past studies, various engine tests confirmed that ZP-blend engine oils outperform ZDDP-blend oils in terms of long-life and fuel-saving properties. Moreover, by using ZP, levels of sulfur can be reduced without sacrificing the oils' primary performance characteristics, so there less of an adverse effect on emission control systems, and lower levels of vehicle emissions can be achieved. We conducted field tests involving dozens of vehicles to verify the fuel economy retention and long-life performance of ZP oils. We report the results in this paper.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles II

2007-07-23
2007-01-2039
JCAPII gasoline workgroup reported vehicle emission study to comprehend the impact of ETBE blending. In previous study, we focused on the compatibility of ETBE blended gasoline with Japanese current gasoline vehicles in-use. Based on recent discussion with ETBE 8% blended gasoline into the market, more information becomes necessary. In this second report, we studied to comprehend the actual emission impact using realistic model fuels using several base stocks. Fuel properties of T50, T90 and aromatic compound content were selected through discussions. Specifications were changed within the range of the market. Both ETBE 0% and 8% were combined for these fuel matrixes. In total, eight fuels and two reference fuels were tested. Two J-ULEV vehicles (one MPI, and a stoichiometric-SIDI) were procured as representatives. We discussed quantitative and qualitative impact toward emissions. Data regarding CO2 and fuel economy change were also reported.
Technical Paper

Oxidation Degradation and Acid Generation in Diesel Fuel Containing 5% FAME

2007-07-23
2007-01-2027
Compared with diesel fuel, FAME is relatively unstable and readily generates acids such as acetic acid and propionic acid. When FAME-blended diesel fuel is used in existing diesel vehicles, it is important to maintain the concentration of FAME-origin acid in the fuel at an appropriately low level to assure vehicle safety. In the present study, the oxidation of diesel fuel containing 5% FAME is investigated. Several kinds of FAMEs were examined, including reagents such as methyl linoleate and methyl linolenate, as well as commercially available products. The level of acid, peroxide, water, and methanol and the pressure of the testing vessel were measured. The result shows that unsaturated FAMEs that have two or more double bonds are unstable. Also, water is generated by oxidation of FAME blended diesel fuel, accelerating corrosion of the terne sheet.
Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

Development of Long-Life Oil for Gas Engines

2006-11-13
2006-32-0013
We closely studied the action mechanism and deterioration mechanism of ZDTP (zinc dialkyldithiophosphate), used as an essential additive in engine oils for over half a century, and determined that the sulfur in ZDTP was hampering efforts to improve oil life. With this in mind, we developed a completely new engine oil blended with ZP (zinc dialkylphosphate), in which oxygen replaces the sulfur in ZDTP, and conducted engine tests. The tests confirmed that the newly developed oil provides long service life that cannot be attained with conventional oil formulated with ZDTP.
Technical Paper

Large Eddy Simulation of Unsteady Flow Around a Formula Car on Earth Simulator

2007-04-16
2007-01-0106
One of the world's largest unsteady turbulence simulations of flow around a formula car was conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES for the assessment of vehicle aerodynamics, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes (RANS) simulation. The aerodynamic forces estimated by LES show good agreement with the wind tunnel data (within several percent!) and various unsteady flow features around the car is visualized, which clearly indicate the effectiveness of large-scale LES in the very near future for the computation of flow around vehicles with complex configurations.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Safety Evaluation on Fuel Cell Stacks Fire and Toxicity Evaluation of Material Combustion Gas for FCV

2007-04-16
2007-01-0435
Fuel cell vehicles represent a new system, and their safety has not yet been fully proved comparing with present automobile. Thorough safety evaluation is especially needed for the fuel system, which uses hydrogen as fuel, and the electric system, which uses a lot of electricity. The fuel cell stacks that are to be loaded on fuel cell vehicles generate electricity by reacting hydrogen and oxygen through electrolytic polymer membranes which is very thin. The safety of the fuel and electric systems should also be assessed for any abnormality that may be caused by electrolytic polymer membranes for any reasons. The purpose of our tests is to collect basic data to ultimately establish safety standards for fuel cell stacks. Methanol pool flame exposure tests were conducted on stationary use fuel cell stacks of two 200W to evaluate safety in the event of a fire.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

Performance Evaluation of Impact Responses of the Sid-Iis Small Side Impact Dummy

1998-05-31
986149
A series of side impact tests have been conducted to evaluate the biofidelity of the latest prototype of a small side impact dummy, SID-II s β+(plus). The tests were lateral impacts for the thorax, shoulder, and pelvis, as well as lateral drops for the head, thorax, abdomen, and pelvis. The test data were compared to the response target corridors that were estimated by scaling the cadaver test data to a smaller occupant. The test results show that the head, should, thorax, abdomen and pelvis of the SID-II s β+ either completely or close to meets the response target corridors, and that its biofidelity has been improved from the previous dummy SID II s B-prototype.
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Wear Mechanisms of Steel Under Boundary Lubrication in Presence of Carbon Black and Graphite Nano-onions Particles

2008-10-06
2008-01-2461
Both carbon blacks and carbon nano-onions nanoparticles have a spheroidal shape and a nested structure. They can be used to simulate the presence of soots in used engine oils. When added to fully formulated fresh engines oils, these two kinds of particles behave very differently. Carbon black particles are highly abrasive causing a lot of wear of steel surfaces and friction increases. At the opposite, the addition of carbon onions in lubricant leads to a reduction of both friction and wear compared to pure base oil. This shows that there is an opportunity to control wear in engines by changing the structure of soots during the combustion process.
X